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The counterpart to a DAC is the ADC, which is generally a more complicated circuit.  
One of the most popular ADC circuit is the successive approximation converter. 
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The idea of sampling is fully covered in the Signal and Linear Systems course.  
Essentially we quantize an analogue signal in time and in amplitude.  Quantizing in 
time does not loose information as long as the sampling frequency is at least twice 
the maximum frequency component of the signal you are sampling.  

Quantising in amplitude is achieved through a ADC and information is lost.  The 
difference between the original analogue signal and the digitized signal is the 
quantisation noise.
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Take a signal V_IN, digitize this using a ADC to produce X[N-1:0] and then convert 
this back to analogue using a DAC to produce V_OUT.  If you now subtract V_IN from 
V_OUT, you have the quantization oise.  This noise signal has an amplitude of +/- ½ a 
LSB.  

If you assume that the input signal is random and therefore the amplitude of the 
quantisation noise is equally likely to take on a value between - ½  LSB and + ½ LSB, 
the RMS value of the noise is easily shown to be around 0.3 LSB.

What is the Signal-to-Noise ratio of an n-bit converter? This can also be calculated 
easily.   Consider a sine wave with an amplitude of +/- 2^(n-1).  We choose this 
amplitude because this is centred around 0 (no dc component) and 1LSB = 1V, 
making this easier to express everything in LSB.  The RMS value of this sine wave is 
easily shown to be 0.71 x 2^(n-1) or 0.35 x  2^n.

Therefore for such a sine wave, the SNR is 1.8 + 6n dB.  In other words, for every 
extra bit of ADC/DAC resolution, we add an extra 6dB to the SNR.



6

Every ADC contains a DAC converter, which provides many threshold voltages.  
The ADC compares the input voltage to be converter V_IN to these threshold 
voltages and determine what the converter digital value should be.  

Each converter value X therefore corresponds to a range of values of V_IN.   
This range defines the threshold voltages which is X +/- ½ LSB.
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The simplest ADC is the flash ADC.   We are converting from the range of 0V to 4V to 
a digital range of 0 to 7 in binary.  

A voltage divider with a string of resistors R (which is the DAC circuit) is used to 
provide all the threshold voltages needed – i.e. 0, 0.5, … 3.5.  7 analogue 
comparators are used to determine which voltage interval V_IN lies.  For example, if 
V_IN = 1.75V, then G1 to G3 are logic ‘1’ and G4 to G7 are ‘0’.  This produces the 
thermometer code which is decoded into a binary number X[2:0].
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The decoder that maps the thermometer code to binary code is very simple –
just a truth table, which can be implemented in Verilog as a case statement 
(similar to the 7-segment decoder example we used before).
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This is a simple ADC using a DAC.  The START signal is a short pulse that 
asynchronously reset the counter to zero.  This starts the ADC conversion.  If VIN is 
above the lowest value from DAC, the counter is enable (HIGHER=1).  The counter 
then counts up until VIN is now lower than the DAC output, and counter is disabled, 
and the DONE signal goes high.  X3:0 shows the value of the counter that makes the 
DAC just over the V_IN value.

The disadvantage of this converter is that the time it takes to perform a conversion 
is dependent on the value of VIN.  Furthermore, if this is a 16-bit converter, it could 
take over 65,000 clock cycles – therefore the conversion time can be very long.

We will next consider a different scheme using the successive approximation 
algorithm.
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Let us assume that the input voltage is 2.85V as shown as the RED line.  We first set 
the DAC input X3:0 to 4’b1000 (i.e. assume MSB to be ‘1’), and compare V_IN to this 
threshold.  You are effectively dividing the while voltage range into two halves: the 
lower BLUE range, and the upper RED range.  V_IN belongs to the lower BLUE range, 
so we know setting MSB to ‘1’ is too high.  We therefore clear the MSB.



11

Next we divide the lower range from 0 to 4V into two equal halves again by setting 
X3:0 = 4’b0100.  The threshold is now 2.0V.  We are now testing the second most 
significant bit to see if this should be ‘1’ or ‘0’.  Now VIN belongs to the upper half, 
therefore we keep the ‘1’ bit which we tested for.
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We now test the next bit by setting X3:0 = 4’b0110, testing X1.  We are now dividing 
the range from 2.0V to 4.0V into two halves. VIN belongs to the lower half, therefore 
we CLEAR X1.
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Finally we test for the last bit. VIN is in the upper range, hence LSB is ‘1’.  We have 
the final converted digital value: X3:0 = 4’b0101.



14

The hardware architecture for a SA-DAC is shown here.  We need to design a FSM to 
implement the algorithm. It is similar to the counter based ADC we look at earlier, 
but the counter is now replaced by a state machine that makes decision on whether 
to reset the ‘1’-bit which was tested, and what the next DAC value to try.
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The state diagram for the FSM to implement the successive approximation algorithm 
is shown here.  You should be able to walk through this easily.

The left most bubble is the starting point, it is initiated when START goes high.  We 
set X3:0 = 4’b1000, i.e. the MSB.  If V_IN is higher than the DAC value, it belongs to 
the upper half, so we take the top transition on the next clock cycle.  Otherwise we 
take the bottom transition.

For the top transition, we keep X3 = 1, and set X2 to 1 for the next successive test.

For the bottom transition, we reset X3 back to 0 (because X3 = 1 put DAC output in 
the wrong range), and set X2 to 1.

In this way, we trace a path all the way to one of the states in the right most column.  
The state output provides the final converted result X3:0, and assert the DONE 
signal (high).
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So far we assume that while the ADC is performing conversion, the input signal is 
held at a fixed voltage level.  If the input signal is in fact changing, the converted 
digital value will not be an accurate measure of VIN at the time of sampling.  To 
ensure that the ADC input is held at a fixed voltage, we usually include follow-and-
hold circuit.  An analogue switch is normally turn ON, so that VIN is continuously 
charging the capacitor C.  When the START pulse activates the ADC to take a sample, 
the DONE signal immediately goes low. This should open the switch and hold the 
VIN value at the time the conversion started.
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A practical sample/hold or follow/hold circuit is shown here using two operation 
amplifier.  This has the advantage that the leakage current from the capacitor can be 
made very low. During the sampling or following mode, the right most op amp 
provides strong charging current to charge the capcitor.
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There is another class of converters known as oversampling converters.   These use 
a sigma-delta modulator circuit which sample the input signal at a much high 
frequency than the Nyquist frequency demands.  Normally it produces a 1-bit digital 
signal which is than down sampled and filtered to produce an accurate analogue 
output for a DAC, and a multi-bit digital value for a ADC.   For example, CD players 
use an oversample DAC with sampling rate of 6.4MHz. This is then down sampled to 
produce an output sample rate of 50KHz – a oversampling ratio of 128 times.
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